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Quintic Polynomials and Real Cyclotomic 
Fields with Large Class Numbers 

By Rend Schoof and Lawrence C. Washington 

Abstract. We study a family of quintic polynomials discoverd by Emma Lehmer. We 
show that the roots are fundamental units for the corresponding quintic fields. These 
fields have large class numbers and several examples are calculated. As a consequence, 
we show that for the prime p = 641491 the class number of the maximal real subfield 
of the pth cyclotomic field is divisible by the prime 1566401. In an appendix we give a 
characterization of the "simplest" quadratic, cubic and quartic fields. 

1. Introduction. Let p be a prime number and let Q(gp)+ denote the maximal 
real subfield of the field of pth roots of unity Q(gp). A classical conjecture of H. S. 
Vandiver asserts that h(Q('p)+), the class number of Q(p)+, is prime to p. For 
small values of p, the class number of Q(~p)+ is small: assuming certain generalized 
Riemann hypotheses, Frank van der Linden [14] showed that it is 1 when p is 
less than 163. It had therefore been suggested that perhaps these class numbers 
are always less than p and hence that Vandiver's conjecture is true for "trivial" 
reasons. This was shown to be false in [4], [11]; the prime p = 11290018777 has the 
property that h(Q(~p)+) is divisible by 16671734220, a number which exceeds p. 
This example was constructed by finding a prime p congruent to 1 mod 12 for which 
both the cubic and the quadratic subfields of Q(p)+ have large class numbers. In 
fact, in this example, p = n2 + 3n + 9 with n = 106253; so p is the conductor of a 
"simplest cubic field" and these fields are known to have large class numbers [13]. 
In this special case the class number of the cubic subfield of Q(gp)+ was found to be 
equal to 6209212 while the quadratic subfield has class number 2685. It follows from 
class field theory that h(Q(~p)+) is divisible by the product of the class numbers 
of these subfields. 

One can show [8], [9] that the primes dividing the class numbers of the subfields 
of Q(,p)+ of degrees 2,3, 4 or 6 are less than p. This implies that the fields Q(~p)+ 
with large class numbers which are constructed by means of the class groups of their 
subfields of degree 2, 3,4 or 6, will never give rise to counterexamples to Vandiver's 
conjecture. One might wonder whether for every prime p all prime divisors of 

h(Q(~p)+) are smaller than p; this would again imply that Vandiver's conjecture is 
true for trivial reasons. We will show this to be false by exhibiting a prime number 
p for which the class number h(Q(~p)+) is divisible by a prime exceeding p. 

For the reasons just given, as is pointed out in the discussions in [4] and [12, 
p. 260], the natural place to look is cyclic quintic fields of prime conductor having 
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small units, since the class numbers of such fields will be large and will not have 

the factorizations caused by proper subfields. 
In 1986, Emma Lehmer exhibited a family of quintic fields which are analogous 

to the simplest cubic fields. These fields are cyclic over Q and the unit groups of 

their rings of integers are generated by units that are small in size. The fields in 

this family that have prime conductor p have a regulator of size only O(log4p). 
The Brauer-Siegel Theorem gives then that the class numbers of these fields are at 

least p2-c for large p, for every ? > 0. It follows from class field theory that the 

class number of Q(,p)+ is divisible by the class number of its quintic subfield. In 

this way, one obtains examples of primes p for which the class number of Q(~p)+ 
is very large and probably for many p divisible by primes exceeding p. 

In the present paper we report on some of our considerations and computations 
concerning the quintic fields of Emma Lehmer. We prove the following 

THEOREM. Let p be the prime 641491. The class number h(Q(~p)+) is divisible 

by the prime 1566401. 

We will in fact show that the quintic subfield of Q(,p)+ has class number equal 
to 1566401. 

In [7] Emma Lehmer explains how she obtained the family of quintic fields. In 

Section 3 we will study the polynomials and the fields exhibited by Emma Lehmer 

and we will show that the zeros of her polynomials are fundamental units of the 

rings of integers of these fields. We will need a result from geometry of numbers 

which is discussed in Section 2. In Section 4 we explain how the computations 
were done and we present a few examples of primes p of moderate size for which 

h(Q(~p)+) exceeds p. 

Acknowledgments. We thank Hendrik Lenstra for the proof of Theorem (2.2) 
and Armand Brumer for suggesting to us how to find the transformation formula 

(3.2). We especially thank Daniel Shanks, from whom we learned about Emma 

Lehmer's polynomials, for his continued interest in this project. This paper was 

written during a stay at MSRI in Berkeley. The second author was also partially 
supported by NSF. 

2. Unit Groups of Cyclic Quintic Fields. Let K be a cyclic extension of 

degree five over Q. The field K can be embedded into the real numbers and we fix 

once and for all one such embedding K C R. Let G be the Galois group of K over 
Q and let a denote a generator of G. In this section we will study OK, the group 
of units of the ring of integers OK of K. 

The unit group OK is a Z[G]-module. There is a canonical G-homomorphism 
from OK to the group ring R[G] given by 

(2.1) ? E log IT(?)I [T]l 
,rEG 

where T(6) is viewed as an element of R via the fixed embedding K C R. The kernel 

of this map is {1, -1}; since for every ? E OK the norm HTEG r(?) is either 1 or -1, 
the image L of OK is contained in the augmentation ideal V { aEG (XT [r]: (XT E 

R, ETEG a'. = O} of R[G]. The augmentation ideal V is a 4-dimensional real vector 

space and by Dirichlet's Unit Theorem, L OK/{1, -1} is a lattice of Z-rank 4 in 
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V. Let N = 1 + a + a2 + a3 + a4 E Z[G] be the G-norm. We fix an isomorphism 
of the ring Z[G]/(N) with Z[f5], the ring generated by the 5th roots of unity, by 
having a correspond with 5, a fixed 5th root of unity. In this way, both V and 

OK/{1, -1} become modules over Z[f5]. 
In order to describe the metric structure of the lattice L in the Euclidean space 

V, we need a result from geometry of numbers. 
For any scalar product ( , ) on a real vector space W we will write Ilxii for 

(x, x)1/2. If M is a lattice of maximal rank in W, we denote by det(M) the volume 
of W/M measured with respect to the scalar product (, ). 

(2.2) THEOREM. Let V be a 4-dimensional real vector space with a scalar prod- 
uct ( , ). Let L C V be a lattice in V of Z-rank 4 and let G be a group of order 5 
which acts isometrically on V and respects L. Suppose that the norm N = EIEG T 

annihilates V. Then there exists a vector x, which generates L as a G-module, 
satisfying 

Ilxii < 2/25-1/8 det(L)1/4 

Proof. Let a be a generator of G. Both V and L are Z[G]/(N)-modules; we will 
regard them as Z[f5]-modules using the isomorphism Z[G]/(N) = Z[f5] mentioned 
above. The fact that G acts isometrically is easily checked to be equivalent to 

(2.3) (cax, y) = (x, ay) for all x, y E V and a E Z[f5], 

where the overhead bar denotes the automorphism of Z[f5] given by 5 ) 5-1. 
Let x $& 0 be a shortest vector in L. Since L is a Z[f5]-module, we have that 

Z[f5] x C L. The vectors bi = 5x with 0 < i < 3 form a Z-basis for Z[f5] . X. 
Note that IjbibI = Ilxii for every i, because multiplication by '5 is an isometry. By a 
standard result in geometry of numbers [6, Lemma (7.2)], there exists, given y E V, 
a vector z E Z[f5] x with IIy - Zii2 < EZ3 0 4 1bi 112 = lx I2, where the inequality is 
strict since the bi are not orthogonal; after all, if the bi were orthogonal, then <5 
would by (2.3) be orthogonal to each of them, which is clearly impossible. When 
we apply this result to a vector y E L we find, since x is a shortest vector, that 
y = z E Z[f5] X. We conclude that x generates L as a G-module and hence that 
V = R ?z Z[f5] as a Z[f5]-module. 

Let us note in passing that an application of the above argument to the lattice L 
which one gets by embedding an ideal of Z[f5] in R ?z Z[f5] implies the well-known 
fact that the ring Z[f5] is a principal ideal domain. 

The 4-dimensional representation V = R0z Z[f5] decomposes with respect to the 
invariant scalar product into an orthogonal sum of two R-irreducible 2-dimensional 
representations. On one factor, a acts as a rotation by 2ir/5, and on the other as 
rotation by 4wr/5. We will identify each of the factors with C; on the first factor, 5 
acts as multiplication by e2ri/5, and on the second as multiplication by e47ri/5. It 
follows from (2.3) that the scalar product, restricted to each factor, is "Hermitian" 
with respect to the action of Z[f5]. Therefore, we can choose a basis of V = C ED C 
such that the length of z = (z1, Z2) E V is given by 

(2.4) i(z1 z2)i i= zizl+z2Z2= i - 
Z2 Z1 
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It is easy to see that the lattice Z[f5](1, 1) C V corresponds to the embedding 

Z[f5] C C ED C via the two complex places of the fields Q(f5). A standard volume 

calculation shows that det(Z[f5](1, 1)) = 2-253/2. Therefore, with x = (x1, X2), we 

have that det(L) = det(Z[f5](xi,x2)) = lxll2lx2122-253/2. We obtain from (2.4) 

that 

(2.5) llxll = det(L) 145 382'/2 + 
x2 xi 

Let E denote the unit '5 + 5 E Z[f5]. Suppose that lX1l/lX2l > 2 + 2 V and 

let y = E-1 x; since lYlllY21 = lxlllx21 and lY1l/lY21 = (2 + lx)-2 *IX1l/lX21, it 

follows easily that IY1/Y21 + IY2/Y1I < Ix /x21 + Ix2/xil and hence by (2.4) that y is 

shorter than x. This is impossible, and we conclude that IX1 1/x2 I1 < 2 + 2 V. By a 

similar argument one concludes that IX2 I /lx < 2 + 1 V5. A glance at the function 

t -? t+ 1/t gives then that lXli/X21 + lX2/XlI < 2 + 2 /5+ (2 + 2v5?)- = v?/, and 

the desired inequality follows from (2.5). This proves the theorem. O 

(2.6) COROLLARY. Let K be a cyclic extension of degree 5 over Q with G = 

Gal(K/Q). There exists a unit 6 E OK which generates OK/{1, -1} as a G-module 

and which satisfies 
\1/2 

log2 IT(E)) I XR/4 
,rG 

where RK is the regulator of K. 

Proof. The G-homomorphism in (2.1) turns O/{1, -1} into a lattice in the 4- 

dimensional real vector space V = {ErEG T * [T]: cr E R, ZTEG aT = O} C R[G]. 
The space V C R[G] is a G-module, annihilated by the G-norm and equipped with 

the usual Euclidean scalar product: for x = ErEG XT * [T] and Y = ErEG Yr * [T] we 

let 

(x,Iy) = xr Yr 

rEG 

With respect to this scalar product, the group G acts isometrically on V. 

From Theorem (2.2) we conclude that there is a unit 6 E OK which generates 

OK/{1, -1} as a G-module and which satisfies 

16 < 2 /5- / det(L) I/ 

where the determinant det(L) is the volume V/L measured with respect to the 

metric induced by the scalar product on R[G]. The regulator RK is obtained by 

projecting V onto R4, using (say) the first four coordinates in R[G], and then 

computing the volume of V/L with respect to the usual measure on R4. The first 

volume is v? times larger, so that det(L) = V/5RK and the result follows easily. O 

The "Hermite constant" 21/25-1/8 in the above theorem is best possible: Take 

L to be the ideal generated by 1 - 5 in Z[f5] and let V = R 0z Z[f5] = C ED C have 

the scalar product induced by (2.4). The determinant of L equals Norm(1 -5) 

det(Z[f5]) = 5 .53/22-2 = 55/22-2, and the vector x = 1 -S5 in L has length 

ll~x~ll = j(1 - f5)(1 - 1) + (1 2)(1 
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this implies that 

llxi _ 5_ - 
21/25-1/8 

det(L)1/4 2- 1/255/8 - 

Our Hermite constant for lattices of rank 4 with action by Z[f5] is slightly smaller 
than the Hermite constant for arbitrary lattices of rank 4 which equals 21/4, see [2, 
p. 332]. 

(2.7) COROLLARY. Let K be a cyclic extension of degree 5 over Q. Let f denote 
the conductor and let RK denote the regulator of K. We have that 

RK > 21 log 4 ( f). 

Proof. Our approach is similar to Cusick's [3]. By Corollary (2.6), we can find a 
unit E E OK with 

1/2 

(2.8) log2 1T(6))? < vR1/4 

BAEG 

Let 1 < 62 < 63 < 64 < 65 denote the conjugates of E in K C R. The discriminant 
/ = f4 of K over Q satisfies 

2 5 ~~~~~5 
< 171 (*i -j )2 = ji ( - E)i ) 2(j-1) < M J 2(j-3) 

1<i<j<5 1<i<j<5 1j=1 1=1 

where 

M = sup rl (1 _ Xi) 
0<11 ... | -*< IX5 1 i<j X3. 

Here we used that Hlj 62 = 1. It was shown by M. Pohst in [10, p. 467] that M = 16. 
33 

Therefore, by the Cauchy-Schwarz inequality, 

log (j) < 2 (j-3) log iI < 2 E(j ? 3)2) (I log2 jIjlI 
lb 1=1 = = 

and hence by (2.8), 

( f4 ) ( /\ ) ( 5 )1/2 
16 lb 16! 

This easily implies the desired result. El 

A similar estimate was obtained by G. Gras and M.-N. Gras in [5]. Their estimate 
is better for very large f, but ours seems to be more useful for the applications in 
Section 3. 

3. The Quintic Fields of Emma Lehmer. In [7] Emma Lehmer exhibits a 
family of polynomials F (X) E Z [X] for n E Z. The polynomials are given by 

X5 + nr2X4 - (2n3 + 6n2 + iOn + 10)X3 

+(n4 + 5nr3+ llrn2+ 15n + 5)X2 + (n3 + 4n2 + lOn + 10)X + 1. 
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Their discriminants are equal to (n3 + 5n2 + iOn + 7)2 (n4 + 5n3 + 15n2 + 25n + 25)4, 
and their zeros in R are approximately 

01 z-(n + 1)2-2, 02 n + 1, 03 -(n + 1)-3, 

04 (n + 1) + 1 and 05 s-(n + 1)-l. 

In the sequel we will need rather precise estimates of the zeros 0i. 

(3.1) LEMMA. When n E Z satisfies In + 11 > 20, the zeros Oi of Fn(X) in R 
satisfy 

log10 I = 2logIn+ 11 ++61, l1g9021 = logIn+ 11 +62, 

1og 1031 =-3log In + 11 + 63, log9041 = log In + 11 + 64 

and log09s5 =-logIn+ 11 +65, 

where 16il < 1/10. 

Proof. We considered each Oi separately, but here only 05 will be discussed as 
an example. In the following computations, the symbolic manipulation language 
MACSYMA was used. 

Let Gn(X) = X5Fn (X-l) and expand Gn (-(n + 1)) as a polynomial in n. It is 
easily seen that Gn(-(n+1)) < 0 for In+11 > 20. Next expand Gn(-.91(n+1)) and 
observe it is positive for n + 1 < -20. Similarly one finds that Gn (-1.1(n + 1)) > 0 
for n + 1 > 20. Therefore, there is a zero of Gn(X) between -.91(n + 1) and 
-1.1(n+1) and hence a zero of Fn(X) between (-.91(n+1))-l and (-1.1(n+1))-1. 
The estimate for log 1051 follows. The other estimates are treated similarly, except 
for the case of 02 and 04 with n > 19. In this case Fn(n + 1), Fn(1.1(n + 1)) and 
Fn (.91 (n + 1)) are all positive; so we observe that Fn (n + 2) =-(n 3+5n2 + 10n + 7) 
which is negative. This yields the desired estimates. El 

It is easy to see that Fn (X) is irreducible for every n E Z by considering it modulo 
2. It is more difficult to show that the zeros of Fn (X) generate a cyclic extension 
K of degree 5 over Q. This can be done by verifying that the transformation 

(3.2) 1 + (n + 2)X 

permutes the roots of Fn(X) cyclically. This is a tedious calculation, and we used 
the symbolic manipulation language MACSYMA to perform it. 

The transformation formula (3.2) was found as follows. We explicitly computed 
the action of the Galois group on the roots of Fn (X) for small values of n; this 
was done using the relation (3.4) between the roots and the Gaussian periods. The 
computations indicated that the 5-cycle a = (12345) generates the Galois group. 
This is moreover the only 5-cycle yielding the correct absolute value Vp- of the 
Gaussian sums r(x) in (4.6). 

Now let 0 be a root of Fn (X). Since the splitting field K is of degree 5 over 
Q, the six elements 1,0,02, a(0), 0a(0), 02a(0) are linearly dependent. This shows 
that a(0) can be expressed as a quotient of two quadratic polynomials in 0. Since 
the same is true for all conjugates of 0, we obtained a system of equations that we 
solved numerically for small values of n. It was then easy to guess the general rule. 
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From now on we will assume that n E Z is such that p = n 4+5n3+15n2+25n+25 
is a prime number; this clearly implies that p is congruent to 1 mod 5. In this case, 
there is another way to see that the roots of Fn (X) generate a cyclic extension of 
Q. Emma Lehmer gives in [7] an explicit description of the roots of F, (X): For a 
coset C of the subgroup ((Z/pZ)*)5 in (Z/pZ)*, the Gaussian period 7rc is given 
by 

(3.3) 1C = Z e2r/p 

XEC 

The roots of F, (X) will be denoted by Oc; they are given by 

(3.4) c= (i) TiC + (()- n2) /5, 

where (Q) denotes the Legendre symbol modulo 5. 
The Galois group of Q(~p) is canonically isomorphic to (Z/pZ)*, and the rjc are 

in the field of ((Z/pZ)*)5-invariants, which is of degree 5 over Q. So, from this 
description of the zeros of F, (X) it follows at once that K, the splitting field of 
Fn (X), is the unique quintic subfield of Q(~p). As in the previous section, we fix an 
embedding K c R. When viewing the zeros OC of F, (X) in K as elements in R, 
we denote them, as in Lemma (3.1), by 0i, where the index is to be taken modulo 
5. Let G be the Galois group of K over Q and let a denote the generator of G that 
corresponds with the 5-cycle mentioned above. 

Since Fn(O) = 1, the zeros of F (X) are units in the ring of integers OK of K. 
XVe will now show that these zeros generate the group OK. 

(3.5) THEOREM. Let p- = ni4 + 5ni3 + 15n2 + 25n + 25 be prime and let Fn (X) E 
Z[X] be as above. The zeros of Fn(X) generate the unit group OK of the quintic 
subfield K of Q(p). 

The regulator RK equals R = I det(log l~i+jl)1<ij<4I. 

Proof. Since the product of the zeros of Fn(X) is equal to -Fn(0) = -1, we 
see that the group generated by the zeros contains -1. Let U denote the group of 
units generated by the zeros modulo {1, -1}. It suffices to show that U is equal to 

OK/{1,-1} 
We prove this in three steps: 
Step 1. If In + 11 > 20, then the index io = [OK/{1, -1}: U] is less than 11. 
The index io is equal to RIRK. We will compare R = I det(log 10i+jl)l<i,j<4l 

with RK, the regulator of K. First we estimate R. By [15, Lemma 5.26] we have 
that 

R Volt Xa log 1a00 ) II 
X:1 0aEG 

where the product runs over the nontrivial characters of G. From this formula we 
obtain 

R = JJ (log 101I + 1og 1021+ S2 log 1031+ log 1041 + 4 log 1051), 
5 ~ 1 
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and since In + 11 > 20, it follows from Lemma (3.1) that 

1 = o4 An+1 l( 
2 + + 3 _ ~4 + f) R= logIn 11+1(2), 

55 ~ 1 

where I 6I < 1/2 log In + 11. From this we get 

(3.6) R< 71+ 
36 

log4n n+ 11. 
log Iri+ 1I 

We obtain, on the other hand, from Corollary (2.7) that 

RK> ? log4 (-) 

and hence, since io = [OK/{1, -1}: U] = R/RK, that 

(3-7) io < ~~~25R 
log 4(p/2) 

Writing p = nr4 + Sn3 + 15nr2 + 25n + 25 and eliminating R from (3.6) and (3.7) 
gives an upper bound for io in terms of n, which is easily seen to be less than 11 
when In++11> 20. 

Step 2. The index io = [OK/{1, -1}: U] is not divisible by 5. 
Both U and OK/{1, -1} are Z[G]-modules which are annihilated by the G- 

norm N, and therefore Z[f5]-modules. Here we identify the ring Z[G]/(N) with the 
Dedekind domain Z[f5] as we did in Section 2. By Corollary (2.6) we can find a unit 
E E OK that generates OK/{1, -1} as a Z[f5]-module. Fixing one zero 0 of Fn(X), 
we have that U = Z[f5] .0. Since 0 E OQ, there is a E Z[f5] such that 0 = ?a c- . 
The quotient group OK/{1, -1}U is therefore, as a Z[f5]-module, isomorphic to 
Z[f5]/aZ[f5], and we have 

(3.8) io = [OK/{1, -1}: U] = Norm (a). 

Up to a unit, the only element a in Z[f5] of norm 5 is 1 - '5. Therefore, if 5 
divides io, we have that 1 - '5 divides a, and we see that 0 = (1 -5) = 
for some rl E OK. Let p denote the prime ideal over p in OK; since p is totally 
ramified in the extension K over Q, the Galois group G acts trivially modulo p. It 
follows that 0 +_ 1 (mod p) and hence that 

Fn(X) (X ? 1)5 modp, 

which is easily seen to be impossible. 
Step 3. The index io = [OK/{1, -1}: U] is equal to one. 
In Step 1 we showed that io < 11 whenever In + 11 > 20. For the remaining n 

for which p = nr4 + 5n3 + 15nr2 + 25n + 25 is prime, we replace the estimate (3.6) by 
an accurate approximation of R; the approximations of R are given in Table (4.7). 
It follows readily from (3.7) that io < 11 for all primes, except for p = 31 or 101. 
In these cases one merely obtains that io < 16. 

Formula (3.8) gives restrictions on the possible values of io: If q is the largest 
power of a prime dividing io, then q 0 or 1 (mod 5). Since, by Step 2, the index 

io is not divisible by 5, it follows at once that io = 1 when p is not 31 or 101. For 
the remaining two values of p we only obtain that io = 1 or 11. 
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One can show that io : 11 as follows: Let q be a prime number which is 1 
(mod 11) and which splits in K. Let W = (OK/qOK)*/((OK/qOK)*)ll . As a 
G-module, W is isomorphic to F11[G], and the image of OK in W is contained 
in the augmentation ideal { EG a' [a] E F11 [G]: EZEG a' = 0}, which is a 
vector space of dimension 4 over F11. One can easily check whether or not the 
group generated by the zeros of Fn (X) mod q in W is equal to the augmentation 
ideal by computing a 4 by 4 determinant. If the determinant is not congruent to 
0 mod 11, one concludes that the image of OK in W is generated by the zeros of 
F, (X) modulo 11th powers and that 11 cannot divide i6. 

For p = 31 we took the prime q = 67 and for p = 101 we used q = 1277. In both 
cases a little computation allowed us to conclude that io $ 11. 

This completes the proof of Theorem (3.5). 0 

4. Numerical Examples. We computed for small integral values of n the class 
numbers of the quintic subfields of Q(~p), where p = n4 + 5n3 + 15n2 + 25n + 25 
is a prime less than 107. In this section we explain how the computations were 
performed. We obtain several examples of small primes p for which h(Q(sp)+) 
exceeds p. Another consequence of our computations is the following result, which 
shows that the class number of Q(~p)+ may be divisible by primes exceeding p. 

(4.1) THEOREM. Let p be the prime 641491. The class number of Q(~p)+ is 
divisible by the prime q = 1566401. 

Proof. As one reads off Table (4.7), the subfield K of degree 5 of Q(~p)+ for 
p = 641491 has class number equal to q = 1566401, which is a prime number. By 
class field theory, the norm map from the class group of Q(~p)+ to the class group 
of K is surjective, and it follows that q divides h(Q(~p)+). This proves the theo- 
rem. E 

In the sequel we let K denote the quintic subfield of Q(~p)+, where p = nr4 + 
5n3 + 15nr2 + 25n + 25 is as above. Let hK denote the class number of K and let 
RK denote its regulator. From Dirichlet's class number formula we obtain 

16 hKRK=~ H6 TV/L(1,X), 

where the product runs over the nontrivial characters X: Gal(K/Q) -? C* and 
L(1, X) denotes the value of Dirichlet's L-series L(s, X) associated with X at s = 1. 

By Theorem (3.5) we know that the unit group of the ring of integers of K is 
generated by the zeros of Emma Lehmer's polynomial. So RK = R, where R is the 
regulator of Emma Lehmer's units. We have 

1 
(4.2) hK = 16R f iL(1, X), 

x$1 

which is the formula we used to compute the class numbers hK. We evaluated an 
accurate approximation of the right-hand side and then used the fact that the class 
number is an integer to obtain hK itself. The regulator R was readily obtained 
from the zeros of the polynomial F, (X), while these zeros were obtained with high 
accuracy using Newton's approximation method and the transformation formula 
(3.2). Since the size of V/pL(1, X) is roughly equal to V/p and since there are four 
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nontrivial characters of Gal(K/Q), it follows from (4.2) and the fact RK is only 
O(log4 p) that we must evaluate each VpL(1, x) with an accuracy at least Ep-1 5 
to obtain the class number hK with an error less than E. 

To approximate the quantities vfpL(1, x), the following formulas, which can be 
deduced from the functional equation of L(s, X) as in [16], were used: 

(4.3) /pL(1, ) = Alp X X7en) j ? dt + E x(n) f <2 e dt, 
VPn = 1 n=1 r/ 

where r(x) denotes the Gaussian sum 

(4.4) r(X) = E X(x)e2rix/p 
XE(Z/PZ)* 

which is in the field K(f5), an extension of degree 20 over Q. Replacing the infinite 
sums in this formula by sums up to N, one introduces, as in [16], an error not 
exceeding 

p2w-2N-3e(7r/P)N2 

The integrals were evaluated using the following power series and continued fraction 
expansions (cf. [1, 5.1.11, 5.1.22, 7.1.5 and 7.1.14]): 

| e dt el P - log(z) 1: 
_1 n Zn 

n=1n 

-eZ 11 1 2 2 3 3 .. =e 
VZ+ 1+ Z+ 1+ Z+ 1+ Z+ 

and 

e-t dt 
= -E 

(-_) 

Z 
2 

n-O n!(2n +1) 

1 2 1 2 1 
3 

2 2 =-e ... 
2 z+ Z+ Z+ Z+ Z+ Z+ 

(here -t denotes Euler's constant). 
The Taylor series were used for 0 < z < 2.2, while the continued fraction ex- 

pansions were used whenever z > 2.2. Both approximations converge exponentially 
rapidly. We did not use Formula (4.4) to evaluate the Gaussian sums r(x) in (4.3); 
this would involve a lengthy summation over the residue classes modulo p. We used 
Emma Lehmer's polynomial instead: We have that 

(4.5) r(X) = E X(C)rc 
C 

where the rc denote the Gaussian periods as in (3.3) and hence by (3.4) 

(4.6) r(X) = ( E) x(C)Oc, 5 C 

where the summations run over the five cosets C of ((Z/pZ)*)5. Using (4.6), the 
Gaussian sums were evaluated very quickly and accurately. 

As in [11], the following complication arises: without excessive computations, we 
cannot establish which zero in R of Emma Lehmer's polynomial corresponds to a 
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given coset C, and neither can we determine which Gaussian sum T(x) corresponds 
to a given character X: Gal(K/Q) -+ C*. In fact, the Gaussian sum, which is an 
element of the field K('5), can only relatively easily be determined up to Galois 
conjugacy. This leaves us with twenty possibilities for the Gaussian sum in (4.3). 
In all cases considered, only one of these gave rise to an approximation of hK 

sufficiently close to an integer. 
Our computations, which were all done on a programmable desk calculator, 

yielded the following results: 

(4.7) Table. 

n p R h 

- 1, -2 11 1.635694126 1 
- 3 31 30.36957651 1 

1 71 70.61067564 1 
- 4 101 119.5256946 1 

2 191 185.4390339 11 
- 6 631 478.3833457 11 

4 941 580.2796987 16 
- 9 3931 1307.037778 256 - 162 

7 5051 1436.693208 1451 
8 7841 1763.648314 421 

- 11 9551 1964.717615 541 
- 18 80251 4524.280104 37631 = 112 311 

16 90281 4674.905564 19301 
- 21 154291 5663.923110 108691 = 11 41 241 
- 22 187751 6044.688165 76901 = 11 6991 

23 349211 7335.333173 186091 = 71 2621 
26 555671 8467.444092 721151 = 661 1091 
27 641491 8842.507837 1566401 

- 31 788231 9441.527007 1217821 = 11 110711 
- 32 899321 9813.061662 798256 = 16 . 49891 
- 36 1464901 11284.06551 4628591 = 11 420781 
- 37 1640531 11647.87253 1636721 
- 42 2766691 13442.41069 20599841 = 31 664511 

41 3196631 13935.71793 8088176 = 16 505511 
51 7468771 17379.48515 28850896 = 16 . 521 3461 

- 54 7758151 17582.83476 37142851 = 101 367751 

In the table we list in the first column integers n for which p = n4 + 5n3 + 15nl2 + 
25n + 25 is a prime less than 107. The prime p is listed in the second column. In 
the third column the regulator of the quintic subfield of Q(p) is listed, and in the 
last column the class number of this field is given. The quintic fields of conductor 
11, 31, 71 and 101 were already known to have class number-one [5], [14]. The class 
numbers of the quintic subfields of Q(p)+ for p = 191 and 631 were already shown 
to be equal to 11 by G. Gras and M.-N. Gras in [5]. 
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Appendix. A Characterization of the Simplest Quadratic, Cubic, and 
Quartic Fields. Emma Lehmer [7] has shown that in the "simplest" quadratic, 
cubic, and quartic fields it is possible to obtain units by translating the Gaussian 
periods by integers. We show that this property characterizes these fields. 

THEOREM. Let d = 2,3, or 4. Let p _ 1 (mod 2d) be prime and let K be the 
subfield of Q(p) of degree d over Q. Suppose there is a (respectively quadratic, 
cubic or quartic) Gaussian period r and an integer k such that r - k is a unit of 
K. 

(a) If d = 2, then p = n2 + 4 for some n E Z. 
(b) If d = 3, then p = n2 +3nr+9 for some n E Z. 
(c) If d = 4 andr - k has norm (from K to Q) equal to +1, then p = n2 + 16 

for some n E Z. 

We note that these are exactly the representations of p needed for K to be 
"simplest" quadratic, cubic, or quartic, defined by the polynomials 

X2- nX-1 (d=2), 
X3-nX2-(n + 3)X-1 (d = 3), 
X4-nX3-6X2 +nX+ 1 (d= 4). 

Remarks. For p = 401 and d = 4, the unit r - 2 has norm -1, so the extra 
assumption in (c) is needed. However, we do not know of any other examples of 
this type. 

(Note added in proof: Don Zagier has pointed out that the question can be 
reduced to the single Diophantine equation 

4X2y2 _ 1 = (y2 _ yZ - X2)(Y2 _ X2). 

Integral solutions for which p = 16X2 + Z2 is prime correspond to primes for which 
- k, for some k, has norm -1. It seems possible that (x, y, z) = (-5, -2, 1) and 

(1, -2,1) are the only solutions. They correspond to p = 17 (which is already 
covered by (c)) and p = 401.) 

Calculations seem to indicate that if d = 5 then K must be one of Emma 
Lehmer's quintic fields, but we have been unable to prove this. 

Proof of the Theorem. (a) The quadratic periods are roots of 

x2+X+ 1-P 
4 

If r-k is a unit, then k2 + k + (1-p)/4 = +1, hence p = (2k + 1)2 ? 4. The result 
follows easily. 

(b) Write 4p = L2 + 27M2 with L _ 1 (mod 3). The cubic periods are the roots 
of 

F3(X) =X3+X2(P -)X (L + 3)p-1 

Our assumption is that F3(k) = +1. Letting z = 3k + 1, we obtain p(3z + L) = 

z3 + 27. 
Consider the "minus" case: p(3z + L) = z3- 27 = (z - 3) (Z2 + 3z + 9). Suppose 

that p divides z2 + 3z + 9, so pa = z +3z+9withaE Z. Then 3z+L=a(z-3) 
and (a - 3)z = L + 3a. If a = 1, we are done. Since z2 + 3z + 9 is odd, a must be 
odd. If a = 3, then 3 1 z and hence 3 1 p, which is not possible. Therefore, a > 5. 
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The equation z2 + 3z + 9 = pa may be rewritten as 

L______L 3a _L2 + 27M2 

(a -3 ) 
3 

a -3 ) 4 
a 

This becomes 

(a - 1)2(a - 4)L2 + 36(1 - a)L + 27(M2a(a - 3)2 - 4a2 + 12a - 12) = 0. 

This equation, regarded as a quadratic polynomial in L, must have nonnegative 
discriminant, so 

12(a - 1)2 > (a - 1)2(a - 4)(M2a(a - 3)2 - 4a2 + 12a - 12), 

hence 
4(a - 1) > a(a - 4)M2. 

Since a-1 < a(a-4) for a > 5, we have M2 < 4. Therefore, M2 = 1 and 

p = (L2 + 27)/4 = n2+ 3n + 9 with n = (L-3)/2. If p I (z-3), then Izi > p-3, 
since z-3 = 3k-2 0 O. Therefore, ILI < ap- < IzI + 3, so IzI + 3 > p = 

(Z3 - 27)/(3z + L) > (1z13 - 27)/(41zl + 3). This implies that Izi < 7, so p < 10, 
and hence that p = 7. But 7 = n2 + 3n + 9 with n = -1, so we are done. 

The "plus" case is handled similarly. 
(c) Write p = A2 + 16B2 with A _ 1 (mod 4). The quartic periods are the roots 

of 

F4(X) = X4 +X3 - 3(P - 1) X2 - 3p - 2pA - 1X+ (p - 1)2 - 4p(A - 1)2 4(X)= X4+ X3 
8 16 +256 

We have F4(k) = 1. Letting z = 4k + 1, we obtain 

p(6z2 - 8Az - p + 4A2) = (z2 + 16)(z2 - 16). 

Suppose first that p divides z2 + 16, so pa = z2 + 16 with a E Z. Then 

a(z2 - 16) = 6z2 - 8Az - p + 4A2 

and 
a(z2 -16) - 2z2 +p = 4(A - z)2. 

Let ca = a - 1 and replace z2 by pa - 16 = poa + p - 16: 

ca(pca - 32) = (2(A _ Z))2 

If 2(A - z) = 0, then ca = 0, so a = 1 and p = z2 + 16 as desired. Therefore, assume 
that 2(A-z) :A 0. Since z = 4k + 1 is odd and p _ 1 (mod 8), we have a _ 1 

(mod 8), hence ca _ 0 (mod 8). Note that also ca > 0. Clearly, gcd(ca,pc - 32) is a 
power of 2, so we have two cases: 

(i) ca = 262, pa - 32 = 2E2 with 6, E E Z. 
We have p62 = E2 + 16, so 3 does not divide 6 and ca _ 2 (mod 3). Therefore 

3 1 a, so z2 + 16 0 (mod 3), which is impossible. 
(ii) a = 62, pa -32 = E2 with 6, E E Z. 
Let 22g (g > 2) be the highest power of 2 dividing ca. Then 24g 11 poa2 and 

22g+5 11 32ca. Since the 2-adic valuation of (2(A _ Z))2 = pa2 - 32c is even, we 
must have that 4g < 2g + 5. Therefore g < 2, so g = 2. Let ca = 16fl with 3 odd. 
Then 3(p3 - 2) is a square, which is impossible modulo 8. 
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It remains to consider the possibility that p divides z2 - 16 = (z + 4) (z - 4). 
Since z + 4 = 4k + 1 + 4 :$O, we have Izl > p-4. Also IAI < d < (IzI + 4)1/2. By 
inequalities similar to those used for the cubic case we obtain Izi < 12, so p < 16. 
Since p 1 (mod 8), this is impossible. This completes the proof. l 
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